_

IBLACK BELT PROGRAMMING

Pool Your GOM+ Ohjects

Drawing from a pool of ready-to-use objects
can satisfy the thousands of clients clamoring
for objects at peak times.

110

WHAT YOU NEED
Windows 2000

Visual C++ 6.0 or
Visual Studio.NET
beta 1 or later

(Note: Visual Basic
developers can
use object pooling
only in VB.NET)

urvival in today’s Internet-centric world de-

pends on your ability to handle a large number

of clients. Dedicating one server object per
client, as you do in the classic two-tier client/server
model, drains critical resources quickly when you
have thousands of clients hammering on your system
at peak load. You can’t realistically allocate resources
such as a database connection, a system handle, or a
worker thread for each client; you must recycle these
resources and amortize the cost of creating them
across many clients.

MyApp.MyCompon:

Figure 1 Configure the Pool Parameters. Use the
Activation tab on your COM+ component's properties page
to configure the way clients create and access instances of
the component. You can configure object pooling—including
pool size and creation timeout values—as well as enable
Just In Time Activation.

by Juval Lowy

Avoid paying this time and resource price for
every client request by using object pooling—con-
structing a pool of already created objects that are
ready to serve clients. Object pooling comes in handy
even in situations where you have a smaller number
of clients but sudden spikes in demand for objects. I'll
explain when to use object pooling, how it works
under COM+, and how to design your components
to take advantage of it. I'll finish by briefly introduc-
ing you to object pooling in .NET.

You should use object pooling when instantiating
an object is a costly operation, or when you need to
control access to scant resources. Object pooling is
most appropriate when the object initialization is
generic enough that it doesn’t require client-specific
parameters. When using object pooling, strive to
perform as much of the time-consuming work that’s
common to all clients in the object’s constructor,
such as acquiring connections (OLE DB, ADO, and
ODBC), running initialization scripts, initializing
external devices, creating file handles, fetching initial-
ization data from files or across a network, and so on.
Avoid using object pooling if constructing a new
object doesn’t take a lot of time because pool manage-
ment incurs a fixed overhead every time the client
creates or releases an object.

Implementing an object pool on your own is no
small matter. You must write code that manages the
pool size, returns objects to clients and back to the
pool, denies client requests for objects if the pool is
exhausted, handles concurrentaccess to the pool, and
so on. You must also provide your client with a
dedicated means of creating objects that goes through
your pool. By doing so, you couple your clients to
your pooling schema so any change to the pool
mechanism affects all your clients. Client program-
mers will have to change their code, recompile, retest,
and redeploy. Fortunately, COM+-configured

www.vbpj.com ¢ VBPJ JULY 2001

Ride the Pooled Dhject Life Cycle

Client calls

Execute _ [No]
the method

._" CoCreatelnstance

Get object
from pool

l

f [Client calls a method]

[yes] Return
to the pool

Figure 2 COM+ retrieves an object from the pdol to serve a client. When the client releases the object.
COM+ returns it to the pool instead of destroying it. This Unified Modeling Language (UML) activity diagram
demonstrates that COM+ object pooling is designed to minimize the cost of creating an object, not the cost

of using it (see Resources).

components can use the COM+ object pooling ser-
vice—a simple and elegant generic pooling schema
almost any component can use.

You control the way clients create and access
instances of a COM+ component on its property
page’s Activation tab (see Figure 1). COM+ provides
two instance-management services: object pooling
and Just In Time Activation (JITA). I'll address JITA
in a future article.

Neither techniqueisa COM+ innovation. What's
new is the ease with which you can take advantage of
the services. You can focus your development efforts
on the domain problem at hand rather than the
instance-management plumbing. Unlike custom
object pooling solutions, the COM+ pooling mecha-
nism isn’tcoupled to the client’s code because COM+
“owns” CoCreatelnstance() and New, and intercepts
the Release() call the client makes on the object. So
you can use the same client code for pooled and
nonpooled objects.

COM?+ maintains a pool for each component
type. You pay the cost of creating a new object only
once, then reuse the same instance with many clients.
COM+ recycles the same object instance repeatedly
foraslongas the containing application runs. COM+
calls the object’s constructor and destructor only
once. The COM+ object pooling mechanism is de-
signed to deal with numerous clients that create
objects for every request and release their object
references when the request processing completes
rather than holding references on the objects.

Take a Dip in the Pool

Any COM+ application can host object pools, be ita
server or a library application. A server application
hosts one pool per machine. If you install proxies to
thatapplication on other machines, the pool can serve

VBPJ JULY 2001 ¢ www.vbpj.com

the local network. If you have a library application,
however, COM+ creates a pool of objects per client
process that loads the library application. As a result,
two clients in different processes end up using two
distinct pools. If you want only one pool of objects,
configure your application to be a server application.

Take a look at the life of a pooled object (see
Figure 2). When a client issues a request to create a
component instance, and that component is config-
ured to use object pooling, COM+ first checks the
pool for an available object instead of creating the
object. COM+ returns the object to the client if it
finds one in the pool. If the pool has no object
available and hasn’t yet reached its maximum con-
figured size, COM+ creates a new object and hands
it back to the creating client. In any case, COM+
stays out of the way once a client gets a reference to
the object. In every respect except one, the client’s
interaction with the object proceeds as an interac-
tion with a nonpooled object. When the client calls
the final release on the object (when the reference
count goes down to zero), COM+ returns the object
to the pool instead of releasing it. The client can
hold on to the object foraslongas it needs to. Object
pooling minimizes the cost of creating an object, not
the cost of using it.

Use object pooling by checking the “Enable
object pooling” checkbox on the Activation tab (see
Figure 1). Then configure the pool parameters:
minimum and maximum pool size, and the object-
creation timeout. The minimum pool size deter-
mines how many objects COM+ should keep in the
pool, even when no clients want an object. When
you first launch an application configured to con-
tain pools of objects, COM+ creates the specified
minimum number of objects for each pool. If the
minimum pool size is zero, COM+ doesn’t create

* For an explanation of
Unified Modeling
Language (UML) activity
diagrams: UML Distilled,
Second Edition by Martin
Fowler and Kendall Scott
[Addison Wesley
Longman, 1999, ISBN:
020165783X]

e MSDN Library: http://
msdn.microsoft.com/
library/default.asp

111

any objects until the first client request
comes in. Minimum pool size, when greater
than zero, mitigates sudden spikes in de-
mand by offering a cache of ready-to-use,
already initialized objects. The minimum
pool size must be less than the maximum
pool size, and the COM+ Explorer en-
forces this condition.

The maximum pool size configuration
controls the total number of objects clients
can create, not how many objects the pool
can contain. For example, suppose you con-
figure the pool to have a minimum size of
zero and a maximum size of four. When the
first creation request comes in, COM+ sim-
ply creates an objectand hands it over to the
client. If a second request comes in, and the
first object is still tied up by the first client,
COM+ creates a new object and hands it
over to the second client. The same is true
for the third and fourth clients. But when a
fifth request comes along, four objects have
alreadybeen created and the pool has reached
its maximum potential size. Ifall objects are
in use once you reach that limit, COM+
blocks further client requests until it returns
an object to the pool, after which it hands
over the object to the waiting client.

If, on the other hand, the client waits for
the duration specified in the timeout and no
client returns an object to the pool, COM+
unblocks the client and CoCreatelnstance()
returns the error code CO_E_ACTIVA-
TIONFAILED_TIMEOUT. COM+
maintains a queue of waiting clients for each
pool and services them on a first-come first-
served basis as objects are returned to the
pool. A creation timeout of zero causes all
client calls to fail, regardless of pool state and
object availability.

If the pool contains more objects than
the configured minimum size, COM+ peri-
odically cleans up the pool and destroys the
surplus objects. Deciding on the minimum
and maximum pool size configuration de-
pends largely on the nature of your applica-
tion and the work your objects perform.
Consider these factors when configuring
your pool size:

* Expected system load, including highs
and lows.

* Performance profilingdone on your prod-
uct to optimize the resource usage.

* Various parameters captured during in-
stallation, such as user preferences and
memory size.

* Number of licenses your customer has
paid for. You can set the pool size to this

112

number for an easy-to-manage licensing
mechanism.

In general, try to achieve a good balance in
available resources when configuring your
poolssize, usually trading memory dedicated
to maintain a pool of a certain size for faster
client access and object use.

Obey the Pool Rules

When you want to pool instances of your
component, you must adhere to certain re-
quirements and constraints. First, your com-
ponent must support aggregation to use ob-
jectpooling. COM+implements object pool-
ing by aggregating your object in a COM+-
supplied wrapper. The aggregating wrapper’s
implementation of AddRef() and Release()
manages the reference count and returns the
object to the pool when the client has released
its reference. When you import a COM
component into a COM+ application,
COM+ verifies that your component sup-
ports aggregation. If it doesn’t, COM+ dis-
ables object pooling in the COM+ Explorer.
If you implement your object using the Ac-
tive Template Library (ATL), make sure your
code doesn’t contain the ATL macro
DECLARE_NOT_AGGREGATABLE(),
because it prevents your object from being
aggregated. In particular, when using Visual
C++ 6.0, the ATL wizard inserts this macro
into your component’s header file when gen-
erating Microsoft Transaction Server (MTYS)
components. You can remove this macro
safely to enable object pooling.

Also payattention to your pooled object’s
threading model: A pooled object should
have no thread affinity. It should make no
assumption about the identity of the thread
it’s executing on or use thread-local storage
because the execution thread can differ each
time the object leaves the pool to serve a
client. So the pooled object can’t use the
single-threaded apartment (STA) model
because STA objects always require execu-
tion on the same thread. If the component’s
threading model is marked as “Apartment”
(STA), COM+ disables object pooling for
that component when you import it into a
COM + application. A pooled object can use
only the “Free” multi-threaded apartment
(MTA), the “Both” threading model, or the
neutral-threaded apartment (NTA). You
can’t develop pooled objects using Visual
Basic 6.0 because all COM components
developed in VB6 are STA-based and make
use of thread-local storage, but you can
develop them with Visual Basic. NET.

l ““|BLACK BELT PROGRAMMING "” II|I|-_

If performance is dear to your heart, you
might want to decide on your pooled
component’s threading model according to
your clients’ threading model. If your cli-
ents are predominantly STA-based, mark
your component as “Both” so COM+ can
load it directly in the client’s STA. If your
clientsare predominantly MTA-based, mark
your component as either “Free” or “Both”
(the “Both” model allows direct use by STA
clients as well). If your clients are of no
particular apartment designation, mark your
componentas “Neutral.” For most practical
purposes, the “Neutral” threading model
should be the most flexible and perfor-
mance-oriented.

Another limitation arising from a pooled
object’s inability to use STA: Pooled objects
cannotdisplaya user interface becauseall user
interfaces require the STA message loop.

Let’s look ahead to object pooling in
NET. With all its innovations and ad-
vanced concepts, .NET is only a compo-
nent technology—it provides you with the
means to build binary components rapidly,
much as COM does. But it doesn’t have
component services such as object pooling,
so it relies on COM+ to provide them. A
NET component that takes advantage of
COM+ services must derive from the NET
base class ServicedComponent. You use the
ObjectPooling attribute to configure every
aspect of your .NET component’s object
pooling. This attribute enables or disables
object pooling, as well as sets the minimum
or maximum pool size and object-creation
timeout. For example, write this C# code to
enable your component’s object pooling
with a minimum pool size of three, maxi-
mum pool size of 10, and creation timeout
of 20 seconds (20,000 milliseconds):

[ObjectPooling(MinPoolSize =
3,MaxPool1Size = 10,CreationTimeout =
20000)1]

public class MyComponent
:ServicedComponent

{6 T

Or, use this VB.NET code:

Public Class
<0bjectPooling(MinPoolSize:=
3,MaxPool1Size:=10,
CreationTimeout:=20000)> MyComponent
Inherits ServicedComponent

End Class

www.vbpj.com * VBPJ JULY 2001

IBLACK BELT PROGRAMMING

MinPoolSize, MaxPoolSize, and Creation-
Timeout are public properties of the
ObjectPooling attribute class. If you don’t
specify values for these properties (all or just
a subset), the default COM+ values go into
effect when you register your NET compo-
nent with a COM+ application.

The ObjectPooling attribute class has a
Boolean property called Enabled. The
attribute’s constructor sets Enabled to true
if you don’t specify a value for it. In fact, the
attribute’s constructor has a couple over-
loaded versions: a default constructor that
sets Enabled to true, and a constructor that
accepts a Boolean parameter. All construc-
tors set the pool parameters to the default
COM + values. So these three C# statements
are equivalent:

[ObjectPooling]
[ObjectPooling(true)]

[ObjectPooling(Enabled = true)]

And these VB.NET statements are equiva-
lent as well:

<0ObjectPooling()>

<ObjectPooling(True)>
<ObjectPooling(Enabled := True)>

As you might know already, .NET compo-
nents rely on a garbage collector rather than
reference counting to manage theirlife cycle.
A NET pooled object returns to the pool
when it’s garbage-collected.

Object pooling is a powerful instance-
management service you can use for COM
and .NET components alike. You’ll find it
most useful when creating objects proves
costly in either time or resources (or both),
and when the clients don’t hold onto the
objects for long periods of time—such as
Internet clients, because of the stateless na-
ture of HTTP. If the clients do hold onto
their objects for awhile, consider combin-
ing object pooling with Just In Time Activa-
tion, which makes objects return to the pool
between method invocations. VBRI

About the Author

Juval Lowy is a seasoned software architect
and the founder of IDesign, a consulting and
training firm focused on COM/.NET design.

Juval consults, conducts training classes,
and delivers conference talks on component-
oriented design and development. Reach him
through www.componentware.net.

This article is based
on excerpts from his
book, COM+ Services:
The Definitive Guide —
Mastering COM and
.NET Component Ser-
vices [O'Reilly & Asso-
ciates Inc., 2001, ISBN:

e ot d T (e

Ibe Definitie Guide

oRELLY .

0596001037]. Reprinted with permission.
Reach O'Reilly at www.oreilly.com.

. Use these DevX Locator+ codes at
~ www.vbpj.com to go directly to these
. related resources.

~ VB0107 Download all the code for this
~ issue of VBPJ.

~ VB0107BB_T Read this article online.
- DevX Premier Club membership is
. required.

~ Want to subscribe to the Premier
. Club? Go to www.devx.com.

Access Expert Visual Basic® Programming Information—Fast.

VB2TheMax—The Knowledge Repository for VB Developers

Go to the VB2TheMax area on the DevX VBZone for quick access to selected routines,
tips, articles, and sample chapters on VB5, VB6, VB.NET, Windows, SQL, ASP, and more!

® Welcom

Updated Weekly:

www.vb2themax.com

DevX.com, Inc. ® 913 Emerson Street, Palo Alto, CA 94301 » 650.566.2000

DevX is a registered trademark of DevX.com, Inc. VB2theMax is a trademark of Francesco Balena.
Visual Basic and Windows are registered trademarks of Microsoft Corporation.

e 800+ tips, routines and bug reports
¢ QOriginal articles and sample chapters from the best VB books
e 6000+ selected Microsoft Knowledge Base articles
¢ Index of over 900 VB articles

Get Your FREE newsletter for
even more, including the new
VB.NET Watcher column.

Sign up today!

114

www.vbpj.com ¢ VBPJ JULY 2001

